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This paper describes a variational formulation for solving the time-dependent
Navier–Stokes equations expressed in terms of the stream function and vorticity
around multiple airfoils. This approach is an extension to the case of multiply con-
nected domains of the weak formulation based on explicit viscous diffusion recently
proposed by Guermond and Quartapelle. In their method the momentum equation
was interpreted as a dynamical equation governing the evolution of the (weak)
Laplacian of the stream function, while the Poisson equation for the latter was used
as an expression to evaluate the distribution of the vorticity. Time discretizations with
the viscous term made explicit were used, leading to the viscosity being split from
the incompressibility, similarly to the primitive variable fractional-step method.

In the present work the multiconnectedness is addressed by introducing an influ-
ence matrix to determine the constant values of the stream function on the airfoils
in a noniterative fashion. The explicit treatment of the viscous term leads to an
influence matrix rooted in the harmonic problem instead of in the biharmonic prob-
lem occurring in methods enforcing integral conditions on the vorticity, such as the
Glowinski–Pironneau method. The influence matrix changes at each time step or is
constant depending on whether a semi-implicit or fully explicit treatment is adopted
for the nonlinear term. The resulting split method is implemented using a first-order
Euler backward difference or a second-order BDF scheme and linear finite elements.
Numerical results are given and compared with the solutions obtained by means of the
biharmonic formulation for multiply connected domains. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

The formulation of the incompressible Navier–Stokes equations for the stream function
and vorticity has the advantage over the primitive variable approach of reducing the number
of unknowns and of eliminating the incompressibility constraint, which can be difficult
to satisfy numerically. On the other hand, for problems in 2D multiply connected domain
solutions calculated by means of nonprimitive variables can represent physically admissible
flows only provided that the corresponding pressure field is a single-valued function; cf.,
e.g., [1, 2]. This condition poses a technical difficulty and several methods have been
proposed to overcome it.

Typically, in these methods additional unknowns are introduced, to represent the constant
values of the stream function on the surface of the bodies immersed in the stream. This
implies the introduction of additional conditions for the problem to have a unique solution.
In the context of finite differences, these conditions are often obtained by expressing the
line integral of the tangential projection of the momentum equation onto the surface of
the bodies. See, for example, the work of Stella and Guj [14], for the steady problem, and
the works of Daube [3] and of Shen and Loc [13], for the nonstationary problem.

In the framework of the Galerkin finite element formulation, Glowinski and Pironneau
[6] have introduced a method for the biharmonic problem based on the uncoupled solution
of the vorticity and stream function equations, where the constant values of the stream
function on the immersed bodies are determined by means of optimal control theory. This
leads to a small system of linear equations of order equal to the degree of connectedness of
the domain. A similar uncoupled solution method also based on the biharmonic formulation
has been developed in [8].

For problems in simply connected domains, recently Guermond and Quartapelle [9]
introduced a variational formulation for the time-dependent vorticity and stream function
equations with an explicit account of the viscous diffusion term. This method overcomes the
complexity inherent in the fourth-order biharmonic formulation by expressing the governing
equations directly as a system of uncoupled equations at the cost of reducing the numer-
ical stability, which becomes only conditional, in comparison to biharmonic approaches
enforcing integral conditions on the vorticity, such as the aforementioned Glowinski–
Pironneau method.

The aim of the present paper is to extend the method with an explicit viscous diffusion
described in [9] to the case of multiply connected domains. We derive a semi-discrete
linearized problem by approximating the time derivative with finite differences and by
dealing with the nonlinear term in either a semi-implicit or an explicit manner. At this level
the stream function is expanded as the sum of a suitable set of functions leading to a small
linear system to determine the additional stream function unknowns. The influence matrix
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associated with such a linear system has to be recalculated at each time step if the nonlinear
term is treated in a semi-implicit manner; alternatively, it can be determined once and for
all at the preprocessing stage if the nonlinear term is made explicit. A spatial discretization
based on mixed finite elements is considered.

The content of the paper is organized as follows. Section 2 introduces the preliminary
definitions and the functional spaces necessary to formulate the equations of incompress-
ible plane flows, using both primitive and nonprimitive variables. In Section 3 we recall
the classical and variational formulations of the Navier–Stokes problem, written in terms
of velocity and pressure, and then we derive the equivalent system of equations for the
vorticity and the stream function. A thorough analysis is made to show how the addi-
tional conditions associated with the multiple connectedness can be interpreted in the light
of the equivalence of the pressure/velocity formulation with the vorticity/stream function
formulation. The weak equations which guarantee the single valuedness of the pressure
are obtained by means of a particular decomposition of the space of the test functions.
Section 4 addresses the numerical approximation of the vorticity and stream function equa-
tions. We begin by considering a time discretization based on a first-order Euler scheme.
Then a special decomposition of the stream function is introduced to decouple the gov-
erning equation from the relations accounting for the multiple connectedness of the do-
main. A spatial discretization based on a mixed finite element technique is described.
Furthermore, we present a fully explicit implementation of the problem and introduce
a second-order BDF time-stepping algorithm. In Section 5 a set of boundary conditions
suitable for external flow problems is presented, including the general case of nonhomo-
geneous data. In Section 6 a numerical application of the proposed method using linear
elements is presented. In particular, we consider the flow past a multibody airfoil at high
incidence with massive separation. A comparison with the solutions obtained by means of
the biharmonic formulation is also made. The last section is devoted to a few concluding
remarks.

2. DEFINITIONS AND PRELIMINARIES

The preliminary definitions and the functional setting of the problem follow closely the
treatment of [8] and are reported here for the sake of completeness.

Let Ω be an open bounded domain of R
2 that is assumed to be connected but may be

multiply connected and let Γ = ∂Ω be the boundary of Ω . We denote by Γ0 the external
boundary and by Γi , 1 ≤ i ≤ p, the internal connected component of Γ , so that

Γ =
p⋃

i=0

Γi .

It is assumed that each component Γi is Lipschitz continuous; in other words, Γi may have
sharp but not cusped edges. This regularity condition is the minimal requirement if the
Dirichlet data for the velocity on Γi are the trace of a uniform field.

In the following, the space of the real functions infinitely differentiable and of compact
support in Ω is denoted by D(Ω). The space of distributions on Ω is denoted by D′(Ω).
Spaces of vector-valued functions are hereafter denoted with boldface type, although no
distinction is made in the notation of inner products and norms. As usual, L2(Ω) denotes
the space of real-valued square-integrable functions. We denote the inner product in L2(Ω)
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by (· , ·) and let ‖·‖0 be the corresponding norm. H m(Ω), m ≥ 0, is the set of distributions
whose successive derivatives, up to order m, are square-integrable.

To have a unitary framework for the curl operator in a two-dimensional space we introduce

· · · : D′(Ω) −→ D′(Ω); φ �−→
(

∂φ

∂y
, −∂φ

∂x

)
,

∇ · · · : D′(Ω) −→ D′(Ω); v �−→ ∂vy

∂x
− ∂vx

∂y
.

(x̂, ŷ) is a unit base of R
2 and (x̂, ŷ, ẑ) is a right-handed unit base of R

3. Note that we have
φ = φ ẑ and ∇ v = ẑ · v. The following identities will be useful later:

∀v ∈ D′(Ω), (∇ v) = −∇2v + ( · v),

∀φ ∈ D′(Ω), ∇ ( φ) = −∇2φ.

If nonhomogeneous boundary conditions are involved and provided that φ and f are
smooth enough, we have the formula

(∇ f , φ) = ( f , φ) +
∮

Γ

f · τ φ,

where τ is the oriented unit tangent of Γ such that (n, τ , ẑ) is a right-handed triad of unit
vectors, n being the outward normal.

The analysis of the Navier–Stokes equations leads to the consideration of solenoidal
velocity fields; hence we define

J (Ω) ≡ {
v ∈ D(Ω)

∣∣ · v = 0
}

and we denote Jm
0 (Ω), m ≥ 0, the completion of J (Ω) in Hm(Ω). If Ω is open, bounded,

and Lipschitz, then the spaces J0
0(Ω) and J1

0(Ω) are characterized by

J0
0(Ω) = {

v ∈ L2(Ω)
∣∣ · v = 0, n · v|Γ = 0

}
,

J1
0(Ω) = {

v ∈ H1(Ω)
∣∣ · v = 0, v|Γ = 0

}
.

For the ψ–ω formulation of the 2D Navier–Stokes equations in a multiply connected
region we need also to introduce the spaces

Φ ≡ {
ϕ ∈ H 1(Ω)

∣∣ ϕ|Γ0 = 0, ϕ|Γi = Ci , ∀Ci ∈ R, 1 ≤ i ≤ p
}
,

Ψ ≡
{

ψ ∈ H 2(Ω)

∣∣∣∣ ψ|Γ0 = 0, ψ|Γi = Ci , ∀Ci ∈ R, 1 ≤ i ≤ p,
∂ψ

∂n |Γ
= 0

}
.

Spaces Φ and Ψ , equipped with the norm of H 1(Ω) and H 2(Ω), respectively, are Hilbert
spaces.
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3. THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS

3.1. The Formulation in Natural Variables

Let us consider the time-dependent Navier–Stokes problem expressed in terms of velocity
u and pressure p (per unit density). The strong form of the problem is the following:




∂u
∂t

+ (u · )u − ν∇2u + p = f , in (0, T ) × Ω,

· u = 0, in (0, T ) × Ω,

u = b, in (0, T ) × Γ,

u|t=0 = u0, in Ω.

(3.1)

The velocity b specified on the boundary must satisfy the global condition

∮
Γ

n · b = 0, for all t > 0,

which follows from integrating the continuity equation · u = 0 over the domain Ω . On
the other hand, the initial velocity field u0 is assumed to be solenoidal; i.e.,

· u0 = 0.

Finally, the boundary and initial data b and u0 are assumed to satisfy the compatibility
condition (see [17] or [11])

n · b(s, 0) = n · u0|Γ .

We now introduce the weak formulation of the problem. For the sake of simplicity, we
consider first homogeneous conditions for the velocity on the entire boundary, namely,
b = 0. Boundary conditions for external flows with possibly nonhomogeneous data will be
examined in Section 5. Given f ∈ H−1(Ω) (a body force) and u0 ∈ J0

0(Ω), we have the
well-posed Navier–Stokes problem (cf., e.g., Lions [10, p. 69])




Find u ∈ L2
(
0, T ; J1

0(Ω)
) ∩ C

(
0, T ; J0

0(Ω)
)

with u|t=0 = u0 such that

∀v ∈ J1
0(Ω),

(
∂u
∂t

, v
)

+ a(u, v) + b(u, u, v) = ( f , v),
(3.2)

where a denotes the bilinear form

a(u, v) = ν
(

u, v
)

whereas b is the trilinear form defined by

b(u, v, w) = (
(u · )v, w

)
.
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Remark. Note that the variational formulation introduced above does not involve the
pressure. This variable appears only if the space of the test functions is enlarged from J1

0(Ω)

to H1
0(Ω). It can be shown that, if u satisfies (3.2), then there exists p ∈ L2(0, T ; L2(Ω)/R),

such that

∀v ∈ H1
0(Ω),

(
∂u
∂t

, v
)

+ a(u, v) + b(u, u, v) − ( f , v) = −( p, v).

3.2. The ψ–ω Formulation

By virtue of the well-known isomorphisms (see Girault and Raviart [15])

· · · : Ψ −→ J1
0(Ω),

· · · : Φ −→ J0
0(Ω),

it is possible to replace the test functions of J1
0(Ω) by those of Ψ ẑ in (3.2) to obtain

the problem




Find ψ ∈ L2(0, T ; Ψ ) ∩ C(0, T ; Φ) and

ω ∈ L2(0, T ; L2(Ω)) ∩ C(0, T ; H−1(Ω)) such that

∀ϕ ∈ Φ,
(

(ψ)t=0, ϕ
) = (

u0, ϕ ẑ
)
, and for all t > 0

∀ψ ′ ∈ Ψ,

(
∂ ψ

∂t
, ψ ′

)
− ν

(
ω, ∇2ψ ′) + (

J (ω, ψ), ψ ′) = (
f , ψ ′ ẑ

)
,

∀v ∈ L2(Ω),
(
ω, v

) = −(∇2ψ, v
)
,

(3.3)

where J (ω, ψ) denotes the Jacobian determinant, ψ is the stream function, and ω is the
vorticity, defined by

{
u = ψ ẑ,

ω = ẑ · u.

The proof of the equivalence of problems (3.2) and (3.3) is given in [7].

3.3. Multiple Connectedness

To approach the multiple connectedness of the domain it is necessary to introduce addi-
tional vector spaces. First we define

Ψ0 ≡ {
ψ ∈ Ψ

∣∣ ψ|∪p
j=1Γ j

= 0
} = H 2

0 (Ω).

Then we assume that we have at hand p functions k1, . . . , kp such that

∀i, j = 1, . . . , p, ki ∈ Ψ, ki |Γ j = δi j ,

where δi j is the Kronecker symbol. We denote by Γ
K the space defined by

Γ
K ≡ span〈k1, . . . , kp〉.
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Since k1, . . . , kp are linearly independent, Γ
K is a finite-dimensional Hilbert space of

dimension p. Clearly, Γ
K is nontrivial only if the domain is multiply connected.

By virtue of the above definitions, we have the following decomposition:

Ψ = Ψ0 ⊕ Γ
K. (3.4)

We are now in a position to interpret the problem (3.3) in terms of distributions, for which a
mixed discrete approximation can be built. By restricting the test functions to Ψ0 and then
to Γ

K, we obtain the following formulation:




Find ψ ∈ L2(0, T ; Ψ ) ∩ C(0, T ; Φ) and

ω ∈ L2(0, T ; L2(Ω)) ∩ C(0, T ; H−1(Ω)) such that

∀ϕ ∈ Φ,
(

(ψ)t=0, ϕ
) = (

u0, ϕ ẑ
)
, and for all t > 0

∀ψ ′ ∈ Ψ0,

(
∂ ψ

∂t
, ψ ′

)
− ν

(
ω, ∇2ψ ′) + (

ω ẑ ψ, ψ ′) = (
f , ψ ′ ẑ

)
,

∀i = 1, . . . , p,

(
∂ ψ

∂t
, ki

)
− ν

(
ω, ∇2ki

) + (
ω ẑ ψ, ki

) = (
f , ki ẑ

)
,

∀v ∈ L2(Ω),
(
ω, v

) = −(∇2ψ, v
)
.

(3.5)

Remark. Observe that an equation in strong form governing the dynamics of the
Laplacian of ψ could be obtained by “taking the curl” of the momentum equation. However,
by doing so we lose the information, which is instead obtained by testing the momentum
equation of problem (3.1) against the curl of the p functions ki , 1 ≤ i ≤ p.

4. NUMERICAL APPROXIMATIONS

4.1. Time Discretization

For simplicity of exposition we consider first an approximation of the time derivative by
means of a first-order Euler scheme, taking into account the viscous term explicitly and
the nonlinear term in a semi-implicit manner. This gives a semi-discrete linear problem, to
which we restrict our attention initially.

We denote with ψ̄ and ω̄ the stream function and the vorticity evaluated at the previous
time level tn , while ψ and ω denote the unknown functions at the current time tn+1.

To solve the time-discretized problem for ψ as a standard Dirichelet boundary value
problem for the Laplacian operator, we introduce the constant values Ξi , 1 ≤ i ≤ p, as-
sumed by ψ at tn+1 on each internal boundary. Physically, these constants are associated
with the amount of fluid that flows between neighboring bodies. Denoting by f the body
force f n+1, the semi-discrete problem reads




Find ψ ∈ Ψ and ω ∈ L2(Ω) such that

∀ψ ′ ∈ Ψ0, γ
(

ψ, ψ ′) + (
ω̄ ẑ ψ, ψ ′) = r(ψ ′),

∀i = 1, . . . , p, γ
(

ψ, ki
) + (

ω̄ ẑ ψ, ki
) = r(ki ),

ψ|Γi = Ξi , 1 ≤ i ≤ p,

(4.1)
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where γ = 1/∆t, Ξi ∈ R, i = 1, . . . , p, and r(φ) is the linear form defined by

r(φ) = ( (
γ ψ̄ − νω̄

)
, φ

) + (
f , φ ẑ

)
.

The equation for the vorticity field ω at time tn+1 is uncoupled and will be considered
Later.

4.2. Decomposition Method

One of the main difficulties associated with the ψ–ω formulation (4.1) of the incompress-
ible Navier–Stokes equations in multiply connected domains is that one has to determine
the values of the additional unknowns Ξi , 1 ≤ i ≤ p.

In the light of the consideration above, it is natural to set

ψ = ψ0 +
p∑

i=1

Ξi ψi , (4.2)

where ψ0 ∈ Ψ0 and ψi ∈ Ψ , 1 ≤ i ≤ p. The functions ψi can be conveniently defined to
decouple the problem of determining ψ0 from that of determining the constants Ξi .

Indeed, let the functions ψi , 1 ≤ i ≤ p, be the solution to the following variational prob-
lems:




Find ψi ∈ Ψ such that

∀ψ ′ ∈ Ψ0, γ
(

ψi , ψ ′) + (
ω̄ ẑ ψi , ψ ′) = 0,

ψi |Γ j = δi j , 1 ≤ j ≤ p.

(4.3)

Thus, when the expression (4.2) is substituted into the semi-discrete problem (4.1), the latter
decouples and gives rise to a variational problem for ψ0 and to a p× p linear system for the
unknown constants Ξi . The function ψ0 is in fact the solution to the problem

{
Find ψ0 ∈ Ψ0 such that

∀ψ ′ ∈ Ψ0, γ
(

ψ0, ψ ′) + (
ω̄ ẑ ψ0, ψ ′) = r(ψ ′).

(4.4)

On the other hand, the set of equations controlling the constants Ξi , 1 ≤ i ≤ p, is given by
the conditions in (4.1) testing the momentum equation against the curl of functions of Γ

K.
The resulting linear system is

A[ω̄] = β[ω̄], (4.5)

where

A[ω̄]
i j = γ

(
ψ j , ki

) + (
ω̄ ẑ ψ j , ki

)
,

β
[ω̄]
i = −γ

(
ψ0, ki

) − (
ω̄ ẑ ψ0, ki

) + r(ki ).
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Once the stream function ψ has been obtained, the vorticity field ω at the new time level
tn+1 is given by

{
Find ω ∈ L2(Ω) such that

∀v ∈ L2(Ω),
(
ω, v

) = −(∇2ψ, v
)
.

(4.6)

Remark. The treatment of multiconnectedness has been translated into the definition
of the influence matrix A[ω̄] and into the solution to the associated small (nonsymmetric if
ω̄ �= 0) linear system (4.5). This is the distinctive element of the proposed method.

4.3. Spatial Discretization

Thanks to the decoupling between the variational problem for ψ0 and the system giving
the constants Ξi , we are able to introduce a mixed finite element approximation to the
problem based on standard techniques developed for simply connected domains.

Let Th be a regular triangulation of Ω and let P� be the space of polynomials of two
variables of degree less than or equal to �. We introduce the finite-dimensional Hilbert
spaces

Xh ≡ {
ϕh

∣∣ ϕh ∈ C0(Ω), ϕh|T ∈ P�, ∀T ∈ Th
}
,

Ψh ≡ {
ϕh ∈ Xh

∣∣ ϕh|Γ0 = 0, ϕh|Γi = Ci , Ci ∈ R, 1 ≤ i ≤ p
}
,

T being every triangle of Th . An external approximation to the space Ψ0 can be built as
follows:

Ψ0,h ≡ {
ϕh ∈ Ψh

∣∣ ϕh|∪p
i=1Γi

= 0
}
.

Then we build an external approximation to Γ
K by defining the functions ki , 1 ≤ i ≤ p,

satisfying the conditions

∀i, j = 1, . . . , p, ki,h ∈ Ψh, ki,h|Γ j = δi j .

If we set Γ
Kh ≡ span〈k1,h, . . . , kp,h〉, we have the decomposition

Ψh = Ψ0,h ⊕ Γ
Kh . (4.7)

We are now in a position to state the formulation of the fully discrete problem. The
spatially discrete counterpart of the decomposition (4.2) is

ψh = ψ0,h +
p∑

i=1

Ξi ψi,h, (4.8)

where the functions ψi,h , 1 ≤ i ≤ p, are assumed to be the solutions of the following
discrete problems:


Find ψi,h ∈ Ψh such that

∀φh ∈ Ψ0,h, γ
(

ψi,h, φh
) + (

ω̄h ẑ ψi,h, φh
) = 0,

ψi,h|Γ j = δi j , 1 ≤ j ≤ p.

(4.9)
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It follows that the function ψ0,h can be obtained by solving the linear problem{
Find ψ0,h ∈ Ψ0,h such that

∀φh ∈ Ψ0,h, γ
(

ψ0,h, φh
) + (

ω̄h ẑ ψ0,h, φh
) = rh(φh),

(4.10)

where the linear form rh(φh) is defined as

rh(φh) = ( (
γ ψ̄h − νω̄h

)
, φh

) + (
f , φh ẑ

)
.

The small (nonsymmetric) linear system giving the additional stream function unknowns
Ξi , 1 ≤ i ≤ p, now reads

A[ω̄h ]
h = β

[ω̄h ]
h , (4.11)

where

A[ω̄h ]
h,i j = γ

(
ψ j,h, ki,h

) + (
ω̄h ẑ ψ j,h, ki,h

)
,

β
[ω̄h ]
h,i = −γ

(
ψ0,h, ki,h

) − (
ω̄h ẑ ψ0,h, ki,h

) + rh(ki,h).

Equation (4.6) for the vorticity must be integrated by parts to be consistent with our mixed
finite element approximation, i.e., piecewise polynomials and C0 approximation. Therefore
the vorticity field ωh is given by the solution of the problem{

Find ωh ∈ Xh such that

∀vh ∈ Xh,
(
ωh, vh

) = (
ψh, vh

)
.

(4.12)

Remark. There is a certain freedom in choosing the test functions ki,h , 1 ≤ i ≤ p,
defined by the conditions in Section (4.3). For example, if linear finite elements are used,
one can choose the p “belt functions” associated with the internal boundaries, i.e., ki,h is
the function taking the value 1 on every boundary node belonging to triangles having at
least one node on Γi , and 0 elsewhere.

4.4. The Fully Explicit Scheme

We now develop a fully explicit formulation of the problem. The modification consists
simply in replacing ψh with ψ̄h in the nonlinear term of the momentum equation in (4.1).
The decomposition (4.8) remains formally the same, but the functions ψi,h , 1 ≤ i ≤ p, now
are the solution of the following Laplace problems, which can be solved once and for all at
the preprocessing stage:




Find ψi,h ∈ Ψh such that

∀φh ∈ Ψ0,h, γ
(

ψi,h, φh
) = 0,

ψi,h|Γ j = δi j , 1 ≤ j ≤ p.

(4.13)

The variational problem for ψ0,h now reads{
Find ψ0,h ∈ Ψ0,h such that

∀φh ∈ Ψ0,h, γ
(

ψ0,h, φh
) = r expl

h (φh),
(4.14)
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with the linear form r expl
h (φh) defined as

r expl
h (φh) = −(

ω̄h ẑ ψ̄h, φh
) + ( (

γ ψ̄h − νω̄h
)
, φh

) + (
f , φh ẑ

)
.

The linear system associated with the multiple connectedness becomes

Ah = βh, (4.15)

where now

Ah,i j = γ
(

ψ j,h, ki,h
)
,

βh,i = −γ
(

ψ0,h, ki,h
) + r expl

h (ki,h).

Observe that also the influence matrix Ah can be calculated once and for all during prepro-
cessing since the functions ψi,h are now time-independent.

The vorticity field ωh is still obtained by solving problem (4.12).

4.5. The Second-Order BDF Scheme

The semi-implicit method can be modified to obtain high-order accuracy in time. For
instance, this can be done by approximating the time derivative using a second-order BDF
scheme combined with linear extrapolation of the vorticity in the nonlinear term.

Let ψh and ωh be the unknowns at the current time step tn+1, ψ̄h and ω̄h the solution at
the time step tn and ψh and ωh the vorticity and the stream function evaluated at the older
time step tn−1. For convenience, we introduce an estimated vorticity field at time tn+1 by
means of a linear extrapolation in time, namely,

ω�
h = 2 ω̄h − ωh . (4.16)

The scheme is initialized by evaluating (ψ0
h , ω0

h) and (ψ1
h , ω1

h). In particular, ψ0
h and

ω0
h are determined from the initial data, whereas ψ1

h can be obtained by many means—
for example, it can be calculated using a second-order Runge–Kutta method; from ψ1

h one
evaluates ω1

h easily. Then, for each n ≥ 1, we proceed as described hereafter.
First, ψh is decomposed as usual:

ψh = ψ0,h +
p∑

i=1

Ξi ψi,h . (4.17)

The functions ψi,h and ψ0,h in (4.17) are obtained respectively as the solutions of the
problems




Find ψi,h ∈ Ψh such that

∀φh ∈ Ψ0,h,
3
2γ

(
ψi,h, φh

) + (
ω�

h ẑ ψi,h, φh
) = 0,

ψi,h|Γ j = δi j , 1 ≤ j ≤ p,

(4.18)
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and

{
Find ψ0,h ∈ Ψ0,h such that

∀φh ∈ Ψ0,h,
3
2γ

(
ψ0,h, φh

) + (
ω�

h ẑ ψ0,h, φh
) = rBDF

h (φh),
(4.19)

with the linear form rBDF
h (φh) given by

rBDF
h (φh) = (

γ
(
2 ψ̄h − ¯̄ψh/2

) − ν ω�
h, φh

) + (
f , φh ẑ

)
.

Finally, the constants Ξi are calculated by solving the p × p linear system

A
[ω�

h ]
h = β

[ω�
h ]

h , (4.20)

where

A
[ω�

h ]
h,i j = 3

2γ
(

ψ j,h, ki,h
) + (

ω�
h ẑ ψ j,h, ki,h

)
,

β
[ω�

h ]
h,i = − 3

2γ
(

ψ0,h, ki,h
) − (

ω�
h ẑ ψ0,h, ki,h

) + rBDF
h (ki,h).

The vorticity field ωh is evaluated by means of (4.12).

5. MORE GENERAL BOUNDARY CONDITIONS

5.1. Boundary Conditions for External Flows

To deal with external flow problems we are required to introduce more general boundary
conditions. Here we rely upon the analysis found in Guermond and Quartapelle [8], which
is repeated here for the sake of completeness.

Accordingly, it is assumed that the external boundary consists of three nonoverlapping
parts,

Γ0 = Γ0,0 ∪ Γ0,n ∪ Γ0,τ ,

and we make the hypothesis that Γ0,0 ∪ Γ0,n is connected. We enforce the velocity on Γ0,0

(i.e., no-slip condition), the normal component of the velocity on Γ0,n , and the tangential
component on Γ0,τ .

It is natural to introduce the spaces

H ≡ {
v ∈ L2(Ω)

∣∣ · v = 0, n · v|Γ0,0∪Γ0,n∪p
j=1Γ j

= 0
}
,

V ≡ {
v ∈ H1(Ω)

∣∣ · v = 0, v|Γ0,0∪p
j=1Γ j

= 0, τ · v|Γ0,τ
= 0, n · v|Γ0,n = 0

}
.

Thus, given f ∈ H−1(Ω) and u0 ∈ H, the problem (3.2) now reads




Find u ∈ L2(0, T ; V) ∩ C(0, T ; H) with u|t=0 = u0 such that

∀v ∈ V,

(
∂u
∂t

, v
)

+ a(u, v) + b(u, u, v) = (
f , v

)
,

(5.1)
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where a : V × V → R is the continuous bilinear form defined by

a(u, v) = ν
(

u, v
)
,

and b : V × V × V → R is the continuous trilinear form defined as follows:

b(u, v, w) = (
( u) v, w

)
.

This choice of the form b leads us to the so-called rotational form of the Navier–Stokes
problem and means that we want to work with the “total” pressure ptot = p + |u|2/2. Note
that, even though the formulation above does not involve the pressure explicitly, it enforces
a natural boundary condition on it:

p|Γ0,τ
= 0.

The ψ–ω formulation of the problem above under general boundary conditions requires
the introduction of the following Hilbert spaces:

Φ ≡ {
ϕ ∈ H 1(Ω)

∣∣ ϕ|Γ0,0 = 0, ϕ|Γ j = C j , C j ∈ R, 1 ≤ j ≤ p
}
,

Ψ ≡
{

ψ ∈ H 2(Ω)

∣∣∣∣ ψ|Γ0,0 = 0, ψ|Γ j = C j , C j ∈ R, 1 ≤ j ≤ p,
∂ψ

∂n |Γ \Γ0,n

= 0

}
.

(For notational simplicity, the same symbols as before are retained.) As seen in Section 3.3,
to deal with a multiply connected domain, we need to introduce the additional spaces

Ψ0 ≡ {
ψ ∈ Ψ

∣∣ ψ|∪p
j=1Γ j

= 0
}

and Γ
K ≡ span〈k1, . . . , kp〉,

where the functions ki are required to satisfy the conditions

∀i, j = 1, . . . , p, ki ∈ Ψ, ki |Γ j = δi j .

Thanks to the isomorphisms (see Girault and Raviart [5])

· · · : Ψ → H,

· · · : Φ → V,

and to the decomposition Ψ = Ψ0 ⊕ Γ
K, the 2D Navier–Stokes problem formulated in

velocity and pressure under general but homogeneous boundary conditions is equivalent to
the following problem for the stream function and vorticity:




Find ψ ∈ L2(0, T ; Ψ (Ω)) ∩ C(0, T ; Φ) and

ω ∈ L2(0, T ; L2(Ω)) ∩ C(0, T ; H−1(Ω)) such that

∀ϕ ∈ Φ,
(

(ψ)t=0, ϕ
) = (

u0, ϕ ẑ
)
, and for all t > 0

∀ψ ′ ∈ Ψ0,

(
∂ ψ

∂t
, ψ ′

)
− ν

(
ω, ∇2ψ ′) − (

ω ẑ ψ, ψ ′) = (
f , ψ ′ ẑ

)
,

∀i = 1, . . . , p,

(
∂ ψ

∂t
, ki

)
− ν

(
ω, ∇2ki

) − (
ω ẑ ψ, ki

) = (
f , ki ẑ

)
,

∀v ∈ L2(Ω),
(
ω, v

) = −(∇2ψ, v
)
.

(5.2)
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5.2. Nonhomogeneous Boundary Conditions

We now take into account nonhomogeneous boundary conditions. We enforce the essen-
tial boundary conditions on the velocity

u|Γ0,0∪p
i=1Γi

= uΓ (s, t), n · u|Γ0,n = un(s, t), τ · u|Γ0,τ
= uτ (s, t),

where s is the arclength parameter for Γ . On the other hand, we enforce on the vorticity
and pressure the natural boundary conditions

ω|Γ0,n = c(s, t) and p|Γ0,τ
= q(s, t).

Let us define the following boundary data for ψ and its normal derivative:

ai (s, t) =
∫ s

Γi ;s0

n · uΓi 1 ≤ i ≤ p;

a0(s, t) =



∫ s
Γ0,0;s0

n · uΓ0,0 , if s ∈ Γ0,0,∫ s
Γ0,n;s0

un, if s ∈ Γ0,n;

b(s, t) =
{

−τ · uΓ (s, t), if s ∈ Γ0,0 ∪p
i=1 Γi ,

−uτ (s, t), if s ∈ Γ0,τ .

Note that the Dirichlet data uΓi must satisfy the conditions given by

∮
Γi

n · uΓi = 0, 1 ≤ i ≤ p,

which are necessary conditions on the normal component of a solenoidal field for it to
be expressible in terms of a stream function. On the other hand, the possibility of having
τ · uΓi �= 0 on some internal boundary means that the considered boundary conditions can
include the rotation of the immersed bodies of circular section.

Then the complete set of boundary conditions for the unknowns (ψ, ω) is the following:




ψ|Γi = ai (s, t) + Ξi (t), 1 ≤ i ≤ p,

ψ|Γ0,0 = a0(s, t),

∂ψ

∂n|Γ \Γ0,n

= b(s, t),

ω|Γ0,n = c(s, t),

p|Γ0,τ
= q(s, t).

The functions Ξi (t), 1 ≤ i ≤ p, are unknown functions to be determined jointly with the
stream function and the vorticity field.

5.3. Finite Element Approximation

In order to implement an approximation to the Navier–Stokes problem with general
nonhomogeneous boundary conditions based on finite elements, we define the following
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finite-dimensional Hilbert spaces:

Ψh ≡ {
ϕh ∈ Xh

∣∣ ϕh|Γ0,0∪Γ0,n = 0, ϕh|Γi = Ci , Ci ∈ R, 1 ≤ i ≤ p
}
,

Ψ0,h ≡ {
ϕh ∈ Ψh

∣∣ ϕh|∪p
i=1Γi

= 0
}
,

W0,h ≡ {
vh ∈ Xh

∣∣ vh|Γ0,n = 0
}
.

Moreover, by approximating the space Γ
K as we did in Section 4.3 we obtain the decom-

position

Ψh = Ψ0,h ⊕ Γ
Kh . (5.3)

We express, as usual, the stream function in the form

ψh = ψ0,h +
p∑

i=1

Ξiψi,h, (5.4)

where the functions ψi,h , 1 ≤ i ≤ p, are assumed to be the solutions of the following discrete
problems:




Find ψi,h ∈ Ψh such that

∀φh ∈ Ψ0,h,
3
2γ

(
ψi,h, φh

) + (
ω�

h ẑ ψi,h, φh
) = 0,

ψi,h|Γ j = δi j , 1 ≤ j ≤ p.

(5.5)

Then, the discrete variational problem for ψ0,h reads




Find ψ0,h ∈ Xh such that

∀φh ∈ Ψ0,h,
3
2γ

(
ψ0,h, φh

) + (
ω�

h ẑ ψ0,h, φh
) = rBDF

h (φh),

ψ0,h|Γ0,0∪Γ0,n = a0,h(s), ψ0,h|Γ j = a j,h(s), 1 ≤ j ≤ p,

(5.6)

where ai,h(s), 0 ≤ i ≤ p, denote suitable (spatial) approximations of ai (s, tn+1), and we
have set

r BDF
h (φh) = (

γ
(
2 ψ̄h − ¯̄ψh/2

) − ν ω�
h, φh

) + (
f , φh ẑ

) −
∫

Γ0,τ

q
∂φh

∂τ
.

The linear system for the additional stream function unknowns Ξi , 1 ≤ i ≤ p, now takes
the form

A
[ω�

h ]
h = β

[ω�
h ]

h , (5.7)

with A
[ω�

h ]
h and β

[ω�
h ]

h given by

A
[ω�

h ]
h,i j = 3

2γ
(

ψ j,h, ki,h
) + (

ω�
h ẑ ψ j,h, ki,h

)
,

β
[ω�

h ]
h,i = − 3

2γ
(

ψ0,h, ki,h
) − (

ω�
h ẑ ψ0,h, ki,h

) + r BDF
h (ki,h).
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Finally, the vorticity field is determined by means of the equation


Find ωh ∈ Xh such that

∀vh ∈ W0,h,
(
ωh, vh

) = (
ψh, vh

) −
∫

Γ \Γ0,n

b vh,

ωh|Γ0,n = ch(s)

(5.8)

where ch(s) denotes a suitable approximation of c(s, tn+1).

6. NUMERICAL RESULTS

6.1. Multibody Airfoil

As an application of the method described in Sections 4.3–4.5 and 5.3, we have calculated
the time-dependent flow past a multibody airfoil at high incidence for a Reynolds number
R = 1000, based on the chord of the airfoil displayed in the figures.

The configuration is that of a wing with a high-lift device consisting of a three-slotted flap
in combination with a leading-edge slat. This configuration is typical for large transport
aircraft during takeoff and landing maneuvers. It is evident, anyway, that the calculated
flow is far from representing the real flow around such geometries, since the simulation
Reynolds number is too low and differs from the values encountered in practice by at least
three orders of magnitude.

6.2. Computations

The external boundary of the domain was the rectangle [−4, 5] × [−4, 4], the airfoil being
positioned nearly at the center of the rectangle. The boundary conditions for the velocity
are: (i) no-slip conditions on the airfoils, (ii) imposition of horizontal unit velocity on the
left, bottom, and top sides of the external boundary, and (iii) zero tangential component and
zero normal derivative of the normal component on the right outflow side of the external
boundary at x = 5, where also a zero pressure is imposed (q = 0). Thus the side x = 5
corresponds to Γ0,τ and we have Γ0,n = ∅.

This set of boundary conditions implies on the stream function the specification of both
Dirichlet and Neumann conditions on the airfoils as well as on the left, bottom, and top
sides of the external boundary, but only a homogeneous Neumann condition on the outflow
boundary at x = 5, where the imposition of a zero pressure is taken into account in the
weak formulation of the dynamical equation for ψ .

The grid employed in the computations shown consists of approximately 15,000 triangles
and 8000 nodes. In Fig. 1 a particular view of the computational mesh around the vane,
flap, and auxiliary flap is shown.

The initial condition was assumed to be the potential flow obtained as the solution of the
mixed Dirichlet–Neumann problem for the stream function,



∇2ψ init = 0,

∂ψ init

∂n |Γ0,τ

= 0,

ψ init|Γ0,0 = U y|Γ0,0 ,

ψ init|Γ j = Ξ j , 1 ≤ j ≤ p,

(6.1)
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FIG. 1. Particular view of the computational mesh.

where U is the free stream velocity directed along the x axis. We recall that here Γ0,n = ∅
so that Γ0,0 = Γ0\Γ0,τ .

After problem (6.1) was reformulated in weak form and the proper finite dimensional
spaces were introduced, the numerical solution was determined by means of a suitable
decomposition of the space of test functions and by writing the stream function as the sum
of a particular set of functions. The reasoning is very similar to that of Section 4.2. In fact
we have set

ψ init
h = ψ init

0,h +
p∑

i=1

Ξ init
i ψ init

i,h . (6.2)

Now, if we define the functions ψ init
i,h , 1 ≤ i ≤ p, as the solutions to the Laplace problem




Find ψ init
i,h ∈ Ψh such that

∀φh ∈ Ψ0,h,
(

ψ init
i,h , φh

) = 0,

ψ init
i,h|Γ0,0

= 0, ψ init
i,h|Γ j

= δi, j , 1 ≤ j ≤ p,

(6.3)
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FIG. 2. Multibody airfoil at R = 1000. Streamlines of the solutions obtained by means of the proposed explicit
viscous diffusion method with BDF scheme at (a) t = 2 and (b) t = 3.

the function ψ init
0,h turns out to be the solution to the problem




Find ψ init
0,h ∈ Xh such that

∀φh ∈ Ψ0,h,
(

ψ init
0,h , φh

) = 0,

ψ init
0,h|Γ0,0

= U y|Γ0,0 , ψ init
0,h|Γ j

= 0, 1 ≤ j ≤ p.

(6.4)

Here the spaces Ψh and Ψ0,h are defined in Section 5.3, while the space Xh is defined in
Section 4.3.

Finally, by testing the Laplace equation for the stream function against the functions
of Γ

Kh we obtain the linear system giving the additional stream function unknowns
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FIG. 3. Multibody airfoil at R = 1000. Streamlines of the solutions obtained by means of the first-order fully
explicit method at (a) t = 2 and (b) t = 3.

Ξ init
i , 1 ≤ i ≤ p,

Ainit
h

init = βinit
h , (6.5)

where Ainit
h and βinit

h are defined by

Ainit
h,i j = (

ψ init
j,h , ki,h

)
and β init

h,i = −(
ψ init

0,h , ki,h
)
.

The time discretization was carried out by means of the second-order BDF scheme, and the
nonlinear term has been treated in a semi-implicit manner. A time step ∆t = 0.001 was used.

The variables ψ and ω were approximated spatially by means of linear finite elements
over a Delaunay triangulation of the computational domain, generated by the method of
Rebay [12].
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FIG. 4. Multibody airfoil at R = 1000. Streamlines of the solutions obtained by means of the biharmonic
solver at (a) t = 2 and (b) t = 3.

The linear systems resulting from the discretization were solved with the aid of the
SPARSPAK library [4], which is based on a direct method. A computational time of ap-
proximately 4.5 h on a Pentium II 266-MHz processor is necessary to integrate the BDF
scheme from t = 0 to t = 3, each time step taking about 5.36 s. The time cost could be
reduced significantly using iterative methods of solution for the linear systems.

The same calculations were carried out using the fully explicit method and the biharmonic
method. The fully explicit method was considerably faster in computing a single time step
(0.66 s per time step) but required setting ∆t = 0.00025 for stability reasons, so that the
total integration time was about 2.2 h, to be compared with a time of 3.6 h required by the
biharmonic solver.

The streamlines of the solution computed by the BDF scheme are shown in Fig. 2 for
t = 2 and t = 3. The agreement with the solutions obtained on the same computational
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FIG. 5. Multibody airfoil at R = 1000. Vorticity field at t = 2 calculated by means of (a) the proposed explicit
viscous diffusion method with BDF scheme and (b) the biharmonic solver.

mesh by means of the fully explicit method, shown in Fig. 3, and by means of the bihar-
monic problem, shown in Fig. 4, is satisfactory. It can be noted that the dynamic of the
eddies is predicted accurately as well as the presence of separation bubbles over the upper
surface.

In Figs. 5 and 6 respectively, the vorticity field and the pressure coefficient at t = 2
computed by the BDF scheme and by the biharmonic method are compared. Again, the
agreement is acceptable.

A more quantitative comparison can be made by inspecting the values taken by the
stream function on each airfoil calculated by the different methods. The values for t = 1
are summarized in Table 1.

The difference between the values determined by the three methods is found to be less
than 2%, confirming the validity of the proposed formulation.
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TABLE 1

Values of the Stream Function on the Airfoils at t = 1

BDF Fully explicit Biharmonic

Slat −0.48624 −0.49113 −0.49575
Main −0.50423 −0.50924 −0.51381
Vane −0.52518 −0.53029 −0.53482
Flap −0.53983 −0.54499 −0.54950
Aux. flap −0.54736 −0.55256 −0.55705
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FIG. 6. Multibody airfoil at R = 1000. Pressure coefficient at t = 2 calculated by means of (a) the explicit
viscous diffusion method with BDF scheme and (b) the biharmonic solver.
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7. CONCLUSIONS

In this paper we have presented an extension to multiply connected domains of the explicit
viscous diffusion formulation for solving the time-dependent Navier–Stokes equations,
expressed in terms of the stream function and the vorticity.

The solution of the equations is uncoupled thanks to an explicit treatment of the viscous
diffusion, and the multiple connectedness is addressed by introducing a suitable influence
matrix to determine the constant values of the stream function on the airfoils in a noniterative
fashion.

The determination of the influence matrix is based here on the harmonic problem and
is much simpler than in the method relying upon the biharmonic formulation of problem
enforcing integral conditions on the vorticity. This advantage is paid with a loss of stability,
which becomes conditional with a stability limit of the type ν ∆t/h2. This stability constraint
may be severe for creeping flows, but the matter improves for convection dominated flows
since the stability limit scales with the Reynolds number. In this respect, [9] gives an error
analysis that applies here with only small changes.

From the computational point of view, it is to be noted that the harmonic formulation is
somewhat slower than the biharmonic formulation because it requires matrix refactoriza-
tions at each time step, unless the fully explicit method is used. In this last case one obtains
a drastic reduction in the computational costs. The use of iterative methods for the solution
of the linear systems could also be considered to speed up the computations further.

To conclude, the accordance of the obtained results with those computed by means of
the Glowinski–Pironneau method shows the capability of the present method to simulate
accurately two-dimensional flows around multiple airfoils with sharp trailing edges without
having to enforce explicitly integral conditions on the vorticity since they are automatically
satisfied while computing the vorticity field.
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